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Abstract

Model assimilation of data strives to determine optimally the state of an evolving physical system from a limited

number of observations. The present study represents the first attempt of applying the extended Kalman filter (EKF)

method of data assimilation to shock-wave dynamics induced by a high-speed impact. EKF solves the full nonlinear

state evolution and estimates its associated error-covariance matrix in time. The state variables obtained by the

blending of past model evolution with currently available data, along with their associated minimized errors (or un-

certainties), are then used as initial conditions for further prediction until the next time at which data becomes available.

In this study, a one-dimensional (1D) finite-difference code is used along with data measured from a 1D flyer plate

experiment. An ensemble simulation suggests that the nonlinearity of the modeled system can be reasonably tracked by

EKF. The results demonstrate that the EKF assimilation of a limited amount of pressure data, measured at the middle

of the target plate alone, helps track the evolution of all the state variables. The fidelity of EKF is further investigated

with numerically generated synthetic data from so-called ‘‘identical-twin experiments’’, in which the true state is known

and various measurement techniques and strategies can be made easily simulated. We find that the EKF method can

effectively assimilate the density fields, which are distributed sparsely in time to mimic radiographic data, into the

modeled system.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Data assimilation has been used to estimate the state of a dynamic system by merging sparse data into a

numerical model of the system [5,10]. While any dynamic system in science and technology is potentially
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influenced by stochastic forcing, the complete state of the system can presumably be predicted in a com-

puter code according to the system�s underlying deterministic equations, subject to numerical errors and

uncertainties associated with the initial condition and the time-independent model parameters. Meanwhile,
observations, which represent the true state but are subject to sampling and measurement errors, may be

available occasionally as a function of a subset of the system variables. Based upon a prognostic model, as

described above, and a limited number of observations, data assimilation attempts to provide a more

comprehensive system analysis which may lead to a better prediction. This approach has proven particu-

larly fruitful recently in the atmospheric and oceanic sciences [5,11].

The extended Kalman filter (EKF) method [5,10,11,18,21,26] was designed to perform data assimilation

following the above prerequisites. There are two stages involved in the EKF: prediction and update. In the

prediction stage, one solves the full nonlinear state evolution and, by using successive linearizations about
the currently estimated state, advances the error-covariance matrix in time. The update stage merges the

model prediction and current observations, by giving each appropriate weights, to provide an ‘‘analyzed’’

or ‘‘assimilated’’ state. These weights are obtained through minimizing the trace of the error-covariance

matrix (i.e., the mean-square errors) based on a probabilistic analysis. The EKF thus provides a consistent

first-order approximation to the optimal estimate of the nonlinear state at the observation time, as well as

the errors of this estimate. Therefore, it is a sub-optimal approach to the estimate of a nonlinear system. In

principle, there is no truly optimal nonlinear filter that is computable in finite time [12]. One alternative to

the EKF method described here is the ensemble Kalman filter (EnKF) [2,9,17,30] that was designed pri-
marily to reduce the computational cost associated with the calculation of the error-covariance matrix.

Data assimilation, in general, serves two purposes: better prediction and better understanding of the

fundamental physics. If the underlying dynamics of a system is not fully known, data assimilation may help

develop a model of the system via parameter identification [23,28,29]. Since this is the first study applying

the EKF to shock-wave related research, we explore all the above aspects, starting from the feasibility test.

We investigate the performance of EKF for simple flyer plate experiments in a one-dimensional (1D) set-up

where most of its nonlinearity is fairly well understood [1,33]. The numerical model we use in this study is

the 1D version of the MESA code (MESA-1D) [7], which includes a sophisticated reconstruction of the
material interface [32].

Extended Kalman filter is a nonlinear extension of the Kalman filter in 1960 [21,22] that had originally

been developed for linear systems with a small number of model unknowns [10,23]. Its application to

continuum-mechanics problems [5] requires substantial computer storage and a large number of operations

[25]. The EKF has been used, therefore, in the atmospheric and oceanic sciences often for idealized

problems [18,26]. In applications to atmospheric, oceanic, and coupled models that are truly two- or three-

dimensional (2D or 3D), some simplifications or modifications from the original EKF algorithm, including

the EnKF method mentioned above, are necessary to reduce the computational burdens [12,29]. The
current study, hence, serves also as a severe test in applying EKF for a realistic problem represented by a

1D configuration in shock dynamics.

The spatial and temporal distribution and the accuracy of observations are equally important factors in

the performance of data assimilation. The observations may be linear or nonlinear, Eulerian or Lagrangian

functions of the state variables. A convenient methodology, termed as identical-twin experiments [5],

generates synthetic data sets from controlled numerical experiments to test the usefulness of the data as-

similation algorithms. As demonstrated in [19,18], identical-twin experiments are also a useful tool for

observing system design, prior to actual measurements.
This paper is organized as follows. In Section 2 we give a brief review of the EKF method. Section 3

describes the MESA-1D code and the flyer plate experiments. Numerical results of applying EKF to actual

experimental data appear in Section 4. Section 5 is devoted to ‘‘identical-twin experiments’’ where a density

field that mimics radiographic imaging is synthetically generated and used for data assimilation. Con-

cluding remarks appear in Section 6. A more complete description of the EKF algorithm is given in Ap-
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pendix A. Appendix B describes some numerical aspects of implementing EKF in MESA-1D for flyer plate

experiments.
2. The extended Kalman filter

A detailed formulation of the EKF can be found in [10,11,18,26]. A brief summary of the EKF method is

given in this section, while the basic equations are listed in Appendix A. The notation follows [20] with

some minor deviations motivated by the present application.

The EKF first predicts the state variables xp according to the system�s deterministic equations, as a usual

practice, where x is an N -vector representing the state of the system (i.e., N is the number of the prognostic
variables times the number of grid cells). The superscript ‘‘p’’ stands for ‘‘predicted’’. The EKF then

predicts the error-covariance matrix Pp defined by

Pp � E½ðxp � xtÞðxp � xtÞT�; ð2:1Þ

where E represents the expectation operator, xt represents the ‘‘true’’ state, and the superscript ‘‘T’’ labels

the transpose of a vector. Using a matrix Riccati equation, the process described so far is straightforward

and represents the EKFs prediction stage. The update stage is described below.

When observations become available, the EKF updates xp and Pp to xa and Pa, respectively, where the

superscript ‘‘a’’ stands for ‘‘assimilated’’. Least-square minimization of tr(Pp), where ‘‘tr’’ is the trace of a

matrix, yields the Kalman gain matrix K, which serves as a set of coefficient in weighting the so-called

innovation vector, i.e. the difference between the actual observations and their model-predicted values.

The resultant xa and Pa will be the initial conditions for the next cycle of prediction and update. The
repetition of the prediction and update steps in time represents the sequential estimate of the system state

and its uncertainties as obtained by the EKF. The performance of EKF can be measured by: (1) evolution

of tr(Pp;a) that indicates the estimated least-square errors; (2) evolution of selected components of Pp;a that

indicate how well the corresponding state variables are estimated in the least-square sense; and (3) com-

parison between the evolution of the observed and estimated state variables.

Both the system noise (or stochastic forcing) and solution errors due to numerical procedures and

physical drawbacks have to be included in the prediction equation of Pp as given information. The solution

errors may be determined by validation runs of the model against existing data [16] or by ensemble runs of
the model against an ultra-high-resolution reference run [8]. In the current application, we combine both

kinds of errors into one single term as described in Appendix B.
3. MESA-1D code and flyer plate experiment

The Eulerian conservation equations for mass (q), momentum (u), internal energy (e), and the equation

of state (EOS) in MESA-1D are expressed in the following using the total derivative D=Dt:

Dq=Dt ¼ �qux; ð3:1Þ
qDu=Dt ¼ �Px; ð3:2Þ
qDe=Dt ¼ �Pux; ð3:3Þ
P ¼ pðq; eÞ þ Qðq;�eÞ; ð3:4Þ
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where the subscript x represents the partial derivatives with respect to the spatial coordinate x, P is the total

pressure which is the sum of the EOS pressure p and the artificial viscosity Q, and �e is the total strain rate

which is equal to ux. In this work a solid phase Mie–Gruneisen EOS is used with the form of

p ¼ pH þ C½q0e� 0:5pHðl=ð1þ lÞÞ�: ð3:5Þ

The Hugoniot pressure pH is given by

pH ¼ ½q0c
2
0lð1þ lÞ�=½1� lðs� 1Þ�2: ð3:6Þ

The artificial viscosity is defined as

Q ¼ �CLqc0Dx�eþ CQqDx2�e2: ð3:7Þ
Fig. 1. (a) A schematic diagram of the 1D flyer plate experiment and (b) the space–time diagram of the simulated shock represented by

pressure from the MESA-1D code.



Table 1

Model parameters

Parameter Description Value

NC Total number of grid cells 74

Dx Grid size 0.0375 cm

ðNCÞflyer Number of grid cells in flyer plate 8

ðNCÞtarget Number of grid cells in target plate 48

ðNCÞvacuum Number of grid cells in vacuum regions 18 (9� 2)

Dt Maximum size of time step 0.01 ls
qðt ¼ 0Þ Initial density 8.93 gm cm�3

ufp ðt ¼ 0Þ Initial velocity of flyer plate 0.0645 cm ls�1

Y Yield stress 0.026 Mbar

G Shear modulus 0.46 Mbar

C Gruneisen parameter 2.002

s Shock velocity constant 1.489

Co Initial sound speed 0.394 cm ls�1

CL Linear artificial viscosity constant 0.2

CQ Quadratic artificial viscosity constant 2.0
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The parameters in Eqs. (3.5)–(3.7) are defined as follows: C is the Gr€uneisen parameter, q0 is the initial

density, l is the compression q=q0 � 1, c0 is the initial sound speed, Dx is the cell length, s is the shock

velocity constant, and CL and CQ are artificial viscosity constants. MESA uses the third-order Van Leer�s
flux-limiting scheme [31] for advection in order to maintain steep gradients without introducing large

spurious oscillations. The material constitutive model for time-dependent deviatoric stresses is based on the

classical elastic-perfectly-plastic treatment. The use of a ductile fracture (spall) model [1] is optional in the

code.
The physical problem that we consider in this study is a 1D flyer-plate experiment for which MESA-1D

was used in a previous study [15]. A schematic diagram of the flyer-plate experiment is shown in Fig. 1(a).

The flyer plate with a velocity of 0.0645 cm ls�1 (645 m s�1) and a thickness of 0.3 cm impacts the sta-

tionary target plate that is six times thicker. This produces a shock that compresses the material to a

Hugoniot pressure of about 20 Gpa at the impact plane. The shock waves travel into both plates with a

speed of about 0.45 cm ls�1, estimated from the Hugoniot data. These waves eventually reach the outer

boundaries of the plates, where they reflect back into the plate interiors as rarefaction waves. When they

meet again at about 4.7 ls, tensile forces occur and may cause spallation (ductile fracture) inside of the
target plate [1].

The computational domain includes two vacuum regions surrounding the copper plates to circumvent

the potential problems due to boundary conditions of the plates. Our numerical simulations were per-

formed using the model parameters summarized in Table 1. Fig. 1(b) shows the x–t diagram of the ex-

periment, which illustrates the loci of the shock-wave fronts, as obtained by the MESA-1D code for an 8 ls
simulation time without the spall treatment.
4. Pressure data assimilation

In this section, we assimilate the pressure data measured from a flyer plate experiment into MESA-1D

using the EKF method. For the current study, we have pressure data collected at the middle of the target
plate by a Manganin pressure gauge [4] between 2.0 and 3.8 ls (cf. Fig. 3). Therefore, most of the discussion

regarding data assimilation with EKF is devoted to this time interval. The essential numerical consider-
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ations in implementing EKF into MESA-1D appear in Appendix B, including the linearization procedure

and specifications of model and observation errors.

In order to verify whether the shock-wave dynamics of the 1D flyer plate experiment is generally
‘‘tractable’’ by the MESA-1D code, we made an ensemble simulation with 100 realizations. This also helps

shed light on the stability of the Jacobian calculations described in Appendix B. Each of the 100 realizations

corresponds to a model run with a different stochastic forcing function represented by a different seeder of

the random number generator described in Appendix B.

Fig. 2 shows the time evolution of the model variables at the middle of the target plate for an 8 ls time

frame from the ensemble simulation. We see, in general, a right-going shock wave followed by a left-going

rarefaction wave, agreeing with the estimated shock speed of 0.45 cm ls�1, mentioned in Section 3. The

simulated pressure ensemble agrees with the pressure data (cf. Fig. 3). It is apparent that internal energy
tends to be most sensitive to the change in stochastic forcing; its dynamic range, however, is consistent with

the kinetic energy inferred from the dynamic range of velocity evolution.

4.1. Evolution of model variables

Fig. 3 shows the evolution of pressure with time at the middle of the target plate, as obtained by several

distinct approaches. The corresponding curves are color-coded and identified in the figure caption. The

pure prediction without any data assimilation (blue dash-dotted curve) exhibits numerical ringing (the
Fig. 2. Model variable evolution in100 runs with different stochastic forcing function realizations. Each forcing function realization

corresponds to a different seeding of the random distribution described in Appendix B. The four panels correspond to density, velocity,

internal energy, and pressure; the same ordering of the panels is maintained in all similar figures below.
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Fig. 3. Pressure evolution at the middle of the target plate with an observation error (w) of 0.1 kbar and a normalized model error (q)
of 0.001 (see Appendix B). Green curve: fitted to the experimental data points marked by green circles; blue dash-dotted curve: pure

prediction without EKF; black solid curve: assimilated evolution with EKF; red dashed curve: the evolution that the black curve would

have undergone if no data were available after 3.4 ls.
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Gibbs phenomenon) along its flat top portion, between 2.0 and 2.5 ls. The difference between this curve

and the actual data (green curve) is obvious, especially during the release-wave interval, where the pressure
starts to decrease with time. The result of assimilating the pressure data with the EKF (solid black curve)

agrees rather well with the data points in green. The result suggests that, with the given observation and

model errors, the data carries more weight in the optimization process than the model. It even overcomes

the numerical ringing during the flat top interval.

Note in Fig. 3 that there are three distinct time intervals with no data available: (i) 2.25–2.5, (ii) 2.7–2.9,

and (iii) 3.1–3.45 ls. During each of these intervals, the model run with EKF is essentially making a

prediction, based upon the updated information at the beginning of the interval, until the next update. For

the first two intervals, the model run with EKF does a credible prediction, as verified by comparing the
prediction and the data points near the end of the time intervals.

As for the last interval that data are not available, the model run with EKF does not lead to a close

matching of the next available data; instead, it coincides with the pure prediction as a result of the very

similar initial conditions between the two cases during this interval. The sudden restoring feature at the end

of this interval in the black curve shows that the EKF has very high confidence in the data. The further zig-

zag variation in the black curve (from 3.5 to 4.0 ls) reflects the same situation. Namely, the prediction made

by the EKF run between updates tends to stay away from the data until it is pulled back by the update

process at each observation time.
It is clear from the above discussion that the pure prediction has a systematically sharper fall-off in

pressure than the experimental data during the release-wave interval. As a result of applying data assim-

ilation, the predicted pressure with EKF at the end of the simulation is about 12 kbar higher than the pure

prediction. An additional simulation was made in which no more data points were used after the update at

3.4 ls (red dashed curve). This prediction for the rest of the simulation gradually merges to the blue dash-

dotted curve that represents the pure prediction for the entire interval. However, the better prediction

provided by EKF can arguably be seen in Fig. 3 between the red and blue curves during the last 0.5-ls time

interval. If we compare the two at 3.6 ls, the red curve better predicts the observation (in green) than the
blue curve by about 50 kbars.

Fig. 4 shows the effects of data assimilation with the pressure data on all the state variables: density,

velocity, and internal energy at the middle of the target plate; pressure is repeated here for reference
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Fig. 4. Time evolution of all the state variables (density, velocity, and internal energy) and the pressure for the same simulation and at

the same location as depicted in Fig. 3. Refer to Fig. 3 for curve legends.
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purposes. As stressed in Appendix B, pressure is not considered as a state variable and is a given function of

density and internal energy; i.e., equation of state (cf. Eqs. (3.5) and (3.6)). As a result, these two state

variables are affected by the assimilation of pressure data in a similar way as pressure itself is, especially

over the flat-top interval. Due to the lack of an explicit dependence of pressure on velocity, the velocity field

is affected less by the data assimilation, inasmuch as the difference between the pure prediction (blue dash-

dotted curve) and the EKF run (solid black curve) is smaller.
Even though pressure was measured and assimilated only at the middle of the target plate, the effects of

data assimilation are definitely not limited to this point, as shown in Fig. 5. This figure represents the

averaged effects of EKF over the whole material domain except the interfaces. The results thus confirm the

main virtues of the EKF for the highly nonlinear physics of shock-wave dynamics: (i) information trade-off

between observed variables and unobserved; and (ii) propagation of information by the governing equa-

tions, from observed to unobserved location.
4.2. Evolution of uncertainties

As emphasized in Section 2, EKF performance can also be measured by the error-covariance matrices.

Fig. 6 shows the global error with and without the EKF process. Due to the magnitude difference among

the three state variables (cf. Figs. 7 and 8)), tr (Pp) is entirely dominated by the variances of density. Until

data become available at 2.0 ls, the pure prediction results (blue dash-dotted curve) and those with data

assimilation (black solid curve) coincide. The initial sudden drop in tr (Pp) shows merely that the initial



Fig. 5. The same as Fig. 4 except for spatially averaged time evolution over all material grid points. Blue dash-dotted curve: pure

prediction without EKF; and black solid curve: assimilation with EKF.

Fig. 6. The trace of Pp (the sum of the variances) as a function of time. Blue dash-dotted curve: pure prediction without EKF; black

solid curve: assimilated evolution with EKF; red dashed curve: the evolution that the black curve would have undergone if no data

were available after 3.4 ls. The blue and black curves coincide with each other until the first data point at 1.9 ls.
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value of Pp was estimated too large by a factor of 3. After this initial adjustment of about 0.5 ls, the mean-

square error increases slowly, with an approximately constant slope, due to the additive stochastic model

error; see Eqs. (A.8) and (A.10).



Fig. 7. The variances of the three state variables at the middle of the target plate as a function of time. Refer to Fig. 6 for the legends of

different curves.
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When the pressure data become available, the mean-square error drops again suddenly, but only in the

EKF run (black curve). During the interval of data availability, between 2.0 and 3.8 ls, the assimilation

results have the same overall upward trend as the pure prediction results (blue curve), but run systemati-

cally lower and drop slightly each time when the pressure data becomes available. This shows that a single

scalar observation can noticeably reduce the error in estimating the state of our system, with its total

number of 3 NC ¼ 222 discrete variables.
At the end of the 4 ls simulation in Fig. 6, the RMS error, defined as [tr(Pp)/(# of grid points)]0:5 is about

0.191� 10�2 for the pure prediction case. For the case with EKF, the RMS error is 0.180� 10�2. For the

case without the latest updates, the RMS error is 0.183� 10�2. There are, respectively, about 6% and 4%

improvements in the RMS error. Since density is the most dominant variable (cf. Fig. 7), these three RMS

numbers may be considered as having units of gm cm�3.

Fig. 7 shows the variances for each individual state variable at the middle of the target plate as a function

of time; these variances are simply the diagonal entities of Pp at the appropriate grid point. Taking the

square root of the values in Fig. 7 essentially provides error bars for Fig. 4. Each state variable in Fig. 7
carries a maximum variance near 2.0 ls for the pure prediction case, suggesting that the shock arrival (cf.

Fig. 4) must significantly increase model errors in the system at hand. The data point of pressure near 1.9 ls
effectively reduces the density variance from a maximum to nearly zero. A similar effect is seen in the in-

ternal energy variance. Due to the dependencies of pressure on density and internal energy, the variances of

these two state variables at each update time are characterized by distinct but small-amplitude fluctuations.

Fig. 8 shows the variances for each state variable at 3.02 ls, at which time a pressure observation is

available, as a function of grid location. The summation of all the values in Fig. 8 actually gives the tr (Pp)



Fig. 8. The variances of the three state variables at the data (or update) time of 3.02 ls as a function of grid location. Blue dash-dotted

curve: pure prediction without EKF; and black solid curve: assimilation result with EKF just after the update.

J. Kao et al. / Journal of Computational Physics 196 (2004) 705–723 715
at 3.02 ls, as included in Fig. 6. The two peaks in density variance, respectively located at grid points 32 and

52, correspond to the leading and trailing edges of the shock. Even though the pressure data is located at

grid point 41, the effects of the EKF process reduce the errors at all other grid points and, most noticeably,

at these two naturally sensitive spots.

4.3. Sensitivity to model and observation errors

To compute the gain matrix K as expressed by Eq. (A.7), the EKF accounts for both the model error
(Pp) and the observational error, denoted by Ro, in the update procedure (see Section 2 and Appendix A).

These two errors compete with each other as evident from the scalar form of Eq. (A.7)

K � P p=ðP p þ RoÞ ¼ ð1þ Ro=P pÞ�1
: ð4:1Þ

It is seen that K is basically the model error divided by the sum of itself and the observation error. If Ro is
relatively small with a fixed P p, K will be relatively large; the same is the case if P p is large for a fixed Ro. The

assimilated variables are then more influenced by the observations than the predictions, cf. Eq. (A.4).

The EKF process does not always yield an optimized estimate that is as coincident with the data points

as possible; it is not a data fitting process. The resultant optimal estimate is directly dependent on the model

error Pp as well as the observation error Ro, cf. Eq. (4.1). The case we demonstrated in Fig. 3 was based on

the specific errors for the model and the data, as described in Appendix B.

If we increase the observation error from 0.1 kbar (as used in Fig. 3) to 1.0 kbar, the EKF provides a

quite different assimilation, as depicted in Fig. 9(a). The optimal estimate in this case considerably deviates
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Fig. 9. The same as Fig. 3 except with (a) 10 times larger of observation errors; (b) 10 times larger of observation errors and two times

larger of model errors; and (c) 10 times larger of observation errors and 10 times larger of model errors.
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from the data curve. The assimilation run (black curve) lies much more closely to the pure prediction (blue)
than the data curve (green), due to the smaller elements in the Kalman gain matrix K. The final difference in

pressure at 4.0 ls between cases with and without data assimilation is about 7 kbars in comparison with 12

kbars in Fig. 3. The overall uncertainties in the case of Fig. 9(a) are accordingly larger, due to a smaller K,

see Eq. (A.5).

We now consider the sensitivity of assimilated results to model error Pp through the change of model�s
stochastic noise Qp according Eq. (A.2). Fig. 9(b) and (c) show the assimilation results with the same

observation error as in Fig. 9(a) but with a model error that is 2 and 10 times larger, respectively. By

focusing on the later part of the simulation, a 2-times larger model error (Fig. 9(b)) helps bring the as-
similated curve half-way closer to the data curve, while a 10-times larger model error recovers the original

match shown in Fig. 3. As expected, these two cases would suffer, respectively, a 4-times and 100-times

model uncertainty, compared with the case in Fig. 3. The above sensitivity study demonstrates that care-

fully assessing both the model and observation errors is crucial in obtaining meaningful results with the

EKF method.
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5. Observing system assessment with identical-twin experiments

Data assimilation can be tested without the need for real data. The identical-twin experiment is a nu-
merical procedure where synthetic data can be generated by the model to which data assimilation is applied,

subject to a specified stochastic forcing term [5,11]. The data with assigned errors are then evaluated for

their effectiveness in obtaining optimal state estimates. As demonstrated in [12,19], such kind of numerical

experiments can be a useful tool for designing an observing system prior to the actual measurements in

meteorology and oceanography. Identical-twin experiments with this specific purpose were first carried out

in planning the Global Atmospheric research program and were also called observing system simulation

experiments (OSSE) [5].

To generate our synthetic data from a so-called control run, we integrate Eq. (A.8) to obtain xt with a
given stochastic forcing qt. Its covariance matrix will be used as the Qp term in Eq. (A.2) for advancing Pp.

For more sophisticated measurements, the observation function h in Eq. (A.4) may be complicated and

extremely nonlinear. Radiographic imaging in 2D of a 3D experimental configuration is a good example in

this regard [13,14,24]. For the current 1D flyer plate experiments, the technology of measuring density

through radiographic imaging is available but has not been fully investigated in the data assimilation

context.

The radiographic data sets tend to cover the whole spatial extent of the materials but are relatively sparse

in time. In this section, we demonstrate the effects of this technique using the EKF on synthetic data. For
simplicity, we assume that radiography directly provides density data for the grid cells inside the target and

flyer plates. We will thus be assimilating the entire density field into the code in the present experiment.

Fig. 10 shows the EKF performance with the synthetic density data from grid points 12–63 available

every 0.5 ls (i.e., every 50 time steps; see Table 1). These 52 grid cells are chosen for their being well within

the material, as explained in Appendix B about the interface between material and vacuum. The stochastic

forcing used to generate xt in time is based on the same random distribution functions as described in

Appendix B. The synthetic density data sets are constructed based on Eq. (A.10) with a random error

distribution within �0.5 gm cm�3 (about 5% of the ambient value of density). The graphs in Fig. 10 show
the spatially averaged model variables over the 52 grid points where data were assumed to be present, for a

simulation time of 8.0 ls; this time interval basically covers a compression period as well as a tensile period

(see Section 3).

Fig. 10 shows that assimilation of density field leads to both this field and the pressure field (black

curves) following very closely the synthetic data (red dashed curves). The stochastic forcing generates some

mass inside the 52 material grid cells during the compression period and leads to some mass loss during the

tensile period, when comparing the pure prediction (blue dash-dotted curve) and the stochastically forced

run (red dashed curve) in the density panel of Fig. 10. There are, in fact, no net changes of mass and
pressure between these two runs, which shows that the stochastic forcing has been carefully implemented.

Both velocity and internal energy, however, show decreased magnitudes in a time-integrated sense for the

stochastically forced run. The effect of the EKF assimilation on the velocity field seems to over-correct it

somewhat, while the effect on internal energy is more uniformly positive.

Fig. 11 plots the global error in terms of tr (Pp) for the case of synthetic-density assimilation. Because

nearly the whole density field is assimilated, and density is the dominant variable in terms of dimensional

size (recall Section 4.2), the global error is close to zero at the update times. During the time intervals

without data, the growth of the error is characterized by two stages. The first stage is steep and dominated
by the imposed stochastic forcingQp, while the second stage is much less steep due to the combined effect of

Qp and the system�s deterministic error growth, represented by the blue dash-dotted curve.

The red dashed curves represent the growth of the error if the data at 1.5 (or 2.5 or 3.5) ls and later were

not available. These curves illustrate the continued error evolution of the second stage, as just explained.

The blue dashed curve represents the case of only one data set being available, at 3.5 ls. Since taking



Fig. 11. The trace of Pp as a function of time in the identical-twin experiment. Blue dash-dotted curve: pure prediction without EKF;

and black solid curve: assimilated evolution with EKF. The red dashed curves represent the evolution that the black curve would have

undergone if no density data were available after 1.49 or 2.49 or 3.49 ls, respectively; the blue dashed curve represents the case in which

there is only one data set available, at 3.5 ls.
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dashed curve: synthetic data from the ‘‘control run’’.
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radiographic data is an expensive process, the present OSSEs are useful in determining the best timing of

taking such data, so they can be most cost-effective in terms of the final errors (or uncertainties). The results

shown in Fig. 11 suggest that, if limited to a small number of radiographic data takings, it is more beneficial
to take the data at a later time.
6. Concluding remarks

This paper described applications of data assimilation to a simple, but realistic 1D hydrodynamic model

of shock behavior induced by a high-speed impact. Sequential estimation was introduced for small-di-

mensional systems, such as rocket navigation, in the early 1960s [10,21–23]. It has become wide-spread in
fluid-dynamical problems posed by very large atmospheric and oceanic models with a severely limited

amount of data over the last two decades [5,11,12,20,25]. The EKF method [11,21,18,26] was employed in

the current study for assimilating data into the MESA-1D code [7]. EKF was designed to optimize pre-

dictions of, as well as reduce uncertainties in, the modeled state variables, provided that the errors of

observations and model performance are known.

The EKF algorithm solves the full nonlinear state evolution and its associated error-covariance matrix in

time.It provides a consistent first-order approximation to the optimal estimate of the state and of the time-

dependent model uncertainties, both when data are available and when they are not.
A limited amount of experimental data was available for this study from a 1D flyer plate experiment

(Fig. 1). Before the actual implementation of EKF, we conducted an ensemble simulation of 100 realiza-

tions to explore the potential effect of model uncertainties. These simulations (Fig. 2) showed that the

potential effects of random uncertainties are largest in the system�s internal energy. The EKF results, in

general, demonstrate that pressure data at the middle of the target plate alone helps track the evolution of

all the state variables (Figs. 3–8). After the model update at observation time, the ‘‘assimilated’’ state

variables and their associated minimized errors are used as initial conditions for a fresh start of model

prediction till the next data time, or, if data is no longer available, till any desired future time. For shock-
wave related research or applications, the EKF thus provides important additional information where

experimental data are missing, in part or altogether.

When available, data sets should not be used only for validating current model performance, bur also to

predict certain scenarios for which it is not possible at present to obtain any data. This is especially true for

risk assessments or vulnerability analyses. Good examples include future climate change and nuclear

weapon stockpile stewardship.

EKF was further used for the purpose of observing-system design in our 1D shock-wave context. To do

so, we generated synthetic data numerically from identical-twin experiments. In such experiments, the
‘‘true’’ state is obtained from a ‘‘control run’’ of the stochastically disturbed deterministic model, which can

then provide the simulation of a desired measurement pattern. We found that a small number of density

field updates, such as might be provided by radiographic data sets, can effectively track the solution through

a large reduction of model errors.

To the best of our knowledge, there has been no previous attempt to use data assimilation in high-speed

impact studies or solid mechanics modeling. We have shown here how this approach can expand and refine

our knowledge in these fields using the limited laboratory data available. Using the same methodology, we

expect to use the EKF for the optimal estimation of physical parameters used in the deterministic part of
the model [12,27]. We plan in the near future to do systematic parameter estimation, rather than the usual

trial-and-error ‘‘tuning’’ of parameters. This will hopefully further enhance a model�s predictive capability.
We are, in particular, interested in the fracture regime of the physical problem addressed in the paper. Extra

data associated with fracture, including velocity detected by VISAR interferometer [3] and radiographic

images [24], will be used with the EKF method.
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Appendix A. General extended Kalman filter (EKF) algorithm

For a complete derivation of the EKF algorithm, Readers are referred to [10,11,18]. In this appendix we
merely list the equations, as used in the present study. Specific numerical issues of implementation in the

MESA-1D code are addressed in Appendix B. The prediction stage of the EKF method is as follows:

Dxp ¼ mðxpÞDt; ðA:1Þ
dPp ¼ ½MpPp þ PpðMpÞT þQp�dt; ðA:2Þ

where D=Dt is the total derivative, m(xp) represents the governing deterministic processes, and the Jacobian

matrix Mp in the linear system of ordinary differential equations (ODEs) of Eq. (A.2) is defined as

Mp � ðomk=oxlÞx¼xp : ðA:3Þ

Eq. (A.3) represents the linearized transition matrix and mk and xl are the kth and lth components of the

deterministic processes m and state variables x, respectively. The matrix Qp in Eq. (A.2) is the estimated

system noise covariance for the prediction of Pp; see Eq. (A.9) below.

When observations are available, the EKF updates xp to xa and Pp to Pa by

xa ¼ xp þ K½yo � hðxpÞ�; ðA:4Þ
Pa ¼ ðI� KHÞPp; ðA:5Þ

where yo and h, respectively, represent the observations and the observation functions, explained by Eqs.

(A.11)–(A.13) below, K is the Kalman gain matrix described by Eq. (A.7), Pa is the error-covariance matrix

defined by Pa � E½ðxa � xtÞðxa � xtÞT�, I is the identity matrix, and H is the Jacobian of h, which is defined

by

H � ðohk=oxlÞx¼xp : ðA:6Þ

Eq. (A.6) represents the linearized observation matrix, where hk and xl are the kth and lth components of h
and x, respectively. The Kalman gain matrix K in Eqs. (A.4) and (A.5) is obtained by minimizing tr(Pa); the

result of this minimization [10,11] is

K ¼ PpHTðHPpHT þ RoÞ�1
; ðA:7Þ

where Ro is the covariance matrix of the observation error; see Eqs. (A.11)–(A.13) below.
It is worth to mention that Eq. (A.4) in its scalar form is similar to the ‘‘nudging’’ method. However, as

the observation is not exactly a model�s state variable, the left-hand side and the first term in the right-hand

side in Eq. (A.4) have to be in the form of hðxaÞ and hðxpÞ, respectively. In the current study, hðxaÞ will be the
assimilated pressure, hðxpÞ will be the modeled pressure, and yo will be the observed pressure. The state
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variables can only be indirectly altered by assimilated pressure through the model dynamics. We made a

simple test of nudging with K set to be 1. The performance is not even comparable with that by EKF.

The prediction stage described by Eqs. (A.1)–(A.3) and the update stage given by Eqs. (A.4)–(A.7)
together constitute the EKF algorithm for estimating the ‘‘true’’ state of the system, governed by a non-

linear stochastic differential equation

Dxt ¼ mðxtÞDtþ dqt ðA:8Þ

in Eq. (A.8), the stochastic forcing dqt is assumed to represent the unknown model errors (such as subgrid-
scale processes) and is given by an N -dimensional Wiener process

qt � Nð0N ;QtÞ; ðA:9Þ

with zero mean and a covariance matrix Q defined as

Q � E½q qT�; ðA:10Þ

see the last paragraph in Appendix B for the actual prescription of dqt used in the model. While the ‘‘true’’

state xt evolves according to Eqs. (A.8) and (A.9), several observations yo regarding this system become

available and yo is represented by

yo ¼ yt þ wo; ðA:11Þ

here yo is an M-vector of observations contaminated by white noise wo that represents observational er-

rors,which occur in measuring yt, and are assumed to have zero mean and unknown covariance matrix Ro:

wo � Nð0M;RoÞ; ðA:12Þ

with R � E½w wT�. The (unknown) ‘‘true’’ observations yt are connected to the true state xt by

yt ¼ hðxtÞ; ðA:13Þ

where h is an M-vector of observation functions that, linearly or nonlinearly, depend on the state variables

x.

In summary, for an N -vector of state variables x and an M-vector of observations yo, where typically

M � N , Pp and Pa are N � N error-covariance matrices of the state variables, Qp is an N � N covariance

matrix of model errors (or unresolved stochastic forcing), Mp is an N � N linearized transition matrix, H is

an M � N linearized observation matrix, K is an N �M Kalman gain matrix, and Ro is an M �M co-

variance matrix of observational errors.
Appendix B. Numerical aspects of implementing EKF in MESA 1D

This section describes a perturbation method for the calculation of the Jacobian matrix given in Eq.

(A.3), which represents the linearization process within EKF. Prior to our work, the MESA-1D code has

been used for sensitivity analysis with respect to the model parameters listed in Table 1. To apply the

differential sensitivity approach to such an analysis, the automatic differentiation computer program called
ADFOR [6] was successfully tested in MESA-1D [15]. In principle, ADFOR can be used for the calculation

of the Jacobian matrices Mp; see Eq. (A.3) in Appendix A. However, since the N -vector of deterministic

functions m in Eq. (A.1) is not given analytically in a closed mathematical form, difficulties arise in using an

automatic differentiation program for the Jacobian calculations.
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Instead, we use a straightforward perturbation method in which mðxÞn is first defined as

mðxÞn � ðxnþ1 � xnÞ=Dt; ðB:1Þ

where superscript ‘‘n’’ represents the time step and Dt is the size of the time step (see Table 1). We then

perturb each element of xn with the machine precision parameter e ¼ 10�7 to obtain mðxþ eÞn. Finally, Eq.
(A.3) can be simply represented by

Mp � f½mðxþ eÞ � mðxÞ�k=egx¼xp : ðB:2Þ

This method essentially requires (N þ 1) simulations, where N is the total number of unknowns. While only

an approximation, it is actually not more computationally intensive than the automatic differentiation and

requires far less debugging.

It turns out that this perturbation approach works very effectively except at the interfaces between the

copper plates and the vacuums (i.e., at the material boundaries), where large values of Jacobian, calculated

from Eq. (B.2), may cause instabilities in the integration of Eq. (A.2). While such instabilities are unde-

sirable, the interface is indeed a physically and numerically unstable region in most of Eulerian numerical

codes. To avoid this problem, we simply skip the interfaces as well as the attached vacuum regions (to avoid
round-off errors in the latter case) in the integration of Eq. (A.2). Namely, no EKF is performed for the grid

cells at the two ends of the computational domain, which represent the vacuums and the interfaces.

When the observation functions h in Eq. (A.4) are nonlinear functions of x, that are given only nu-

merically, and not analytically, the observation Jacobians H (see Eq. (A.6)) can be determined the same

way as described above for Mp.

In atmospheric and oceanic applications, an initial Pp is estimated in order to integrate Eq. (A.2). For

modeling a laboratory experiment, as in the current study, the initial Pp can be set to be zero. The matrix

Qp in Eq. (A.2) is constructed based on Eq. (A.10). We assume that q in Eq. (A.10) represents the com-
bination of the system and solution errors and is expressed as a random distribution function on grid cells,

with magnitudes between �10�3 � U, where U represents the reference values of each state variable. In

other words, the linear changes of each state variable due to dq alone in Eq. (A.8) would be within �100%

of U after 1000 time steps of integration. In the current case, U is set to be 10.0 g cm�3, 10�1 cm ls�1, and

10�3 Mbar cm3 g�1, respectively, for density, velocity, and internal energy. Finally, the observation error of

the pressure data measured by the Manganin pressure gauge is assumed to be 10�1 kbar (cf. Section 4.3 for

its sensitivity tests).
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